| **Definition:** | | (Or "Smarandache logic") A generalisation of fuzzy logic based on neutrosophy. A proposition is t true, i indeterminate, and f false, where t, i, and f are real values from the ranges T, I, F, with no restriction on T, I, F, or the sum n=t+i+f. Neutrosophic logic thus generalises: - intuitionistic logic, which supports incomplete theories (for 0<n<100 and i=0, 0<=t,i,f<=100); - fuzzy logic (for n=100 and i=0, and 0<=t,i,f<=100); - boolean logic (for n=100 and i=0, with t,f either 0 or 100); - multi-valued logic (for 0<=t,i,f<=100); - paraconsistent logic (for n>100 and i=0, with both t,f<100); - dialetheism, which says that some contradictions are true (for t=f=100 and i=0; some paradoxes can be denoted this way). Compared with all other logics, neutrosophic logic introduces a percentage of "indeterminacy" - due to unexpected parameters hidden in some propositions. It also allows each component t,i,f to "boil over" 100 or "freeze" under 0. For example, in some tautologies t>100, called "overtrue". home. ["Neutrosophy / Neutrosophic probability, set, and logic", F. Smarandache, American Research Press, 1998]. |